

ASU	2003-08-29	AE030058	Α
	·		
		ASU 2003-08-29	ASU 2003-08-29 AE030058

Antenna Concept for Calexico II, mini-PCI

1 Summary and conclusions

1.1 Summary of results

	Freq., GHz	Return Loss, dB	Eff., %
	2.39	-9,8	81
2.39 - 2.49 GHz	2.44	-10,2	74
Band	2.49	-10,1	76
	4.90	-15,7	68,0
4.90 - 5.90 GHz	5.47	-11,3	58,0
Band	5.90	-12,7	57,0

1.2 Conclusions

- The proposed antenna system includes 2 identical antennas with dimension 27 x 12 x 1 mm each.
- The measured Return Loss (VSWR) at the input port for each antenna element is in general not greater than -10 dB over the specified frequency bands.
- Nominal gain is between 0 and 1dBi.
- Each antenna element has close to omni directional pattern coverage.
- The 2 antennas are designed to handle both Vertical and Horizontal polarization. In real applications due to multipath properties of the radio channel both polarizations are important to receive.
- The small antenna dimensions allow flexible spacing for better antenna diversity.
- · Impedance matching network is not needed.

Prepared by	Approved by	Date (last revision)	Doc. No.	Rev
COL	ASU	2003-08-29	AE030058	Α
Distribution				
EA				

1.3 Summary of Intel evaluation criteria and our achievements

Intel Criteria	Results	Our Achievements
Antenna Efficiency	OK	~73% at 2.39 - 2.49 GHz
Antenna Emolency	OK	~61% at 4.9 - 5.9 GHz
Return Loss (<=-10dB)	OK	Not greater than -10dB for both bands
Gain _{nom} > -2dBi	OK	Nominal gain between 0 to 1 dBi
VSWR < 2.0:1	OK	Coherent with return loss
Cable length < 18 inches and connector Hirose U.FL	ОК	Antenna dimension 27 x 12 x 1 mm, cable length can be adjusted to customer specification, connector Hirose U.FL
	ОК	Impedance matching network is not needed.

2 Test object

The proposed antenna system includes 2 identical antennas printed on a PCB with dimensions of $27 \times 12 \times 1$ mm. They are horizontally mounted on to of the LCD screen of a laptop mock-up.

The antennas are soldered with standard 500hm cable and SMA connector to allow 3D radiation, return loss and isolation performance measurements.

3 Measurements

The return loss and isolation measurements are during the evaluation work measured with a network analyser, Agilent ENA E5071A in free space. The 3D-radiation pattern is measured in GigaAnt's anechoic chamber, which is the ORBIT F/R 3D Nearfield chamber. The network analyser connected to the anechoic chamber is an Agilent 8753 ES.

Measurements done:

- 3D measurements 2.39 to 2.49 GHz and 4.9 to 5.9 GHz bands; total field plots; vertical and horizontal polarization plots.
- XY, XZ, YZ cuts for the same bands; total field plots; vertical and horizontal polarization plots
- Total antenna efficiency
- Return Loss
- Isolation

Prepared by	Approved by	Date (last revision)	Doc. No.	Rev
COL	ASU	2003-08-29	AE030058	Α
Distribution		<u> </u>		
FA				

4 Results

4.1 Antenna efficiency and 3D pattern (total field) for the 2.39 – 2.49 GHZ Band

File name	Freq [GHz]	Efficiency [%]	Return loss [dB]
Intel175	2.39	81	-9,8
176	2.44	74	-10,2
177	2.49	76	-10,1

Table 1. Antenna Efficiency

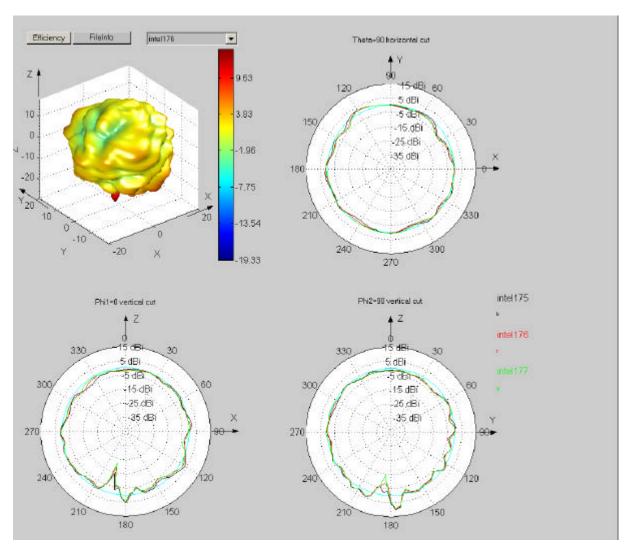


Figure 1 Polar plots show 2.4, 2.45 and 2.5 GHz. The 3D pattern corresponds to 2.45 GHz

Prepared by COL	Approved by ASU	Date (last revision) 2003-08-29	Doc. No. AE030058	Rev A
Distribution EA				

4.2 Antenna efficiency and 3D pattern (total field) for the 4.9 GHz – 5.9 GHz band

File name	Freq [GHz]	Efficiency [%]	Return loss [dB]
Intel21	5.1	68	-15,7
25	5.47	58	-11,3
27	5.9	57	-12,7

Table 2. Antenna Efficiency

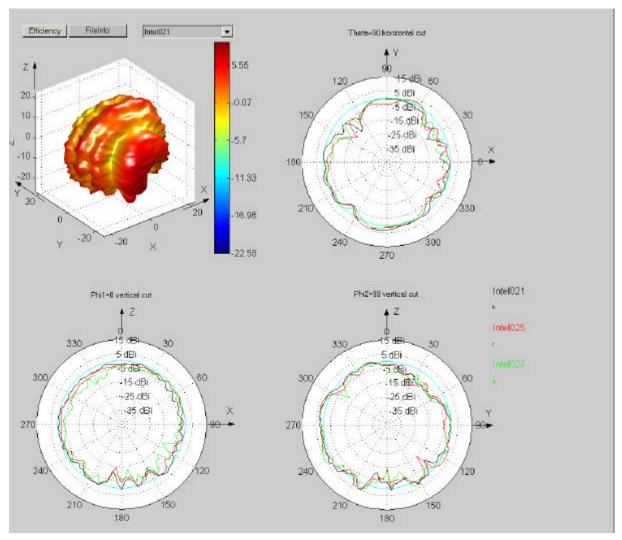


Figure 2 Polar plots show 5.1, 5.47 and 5.9 GHz. The 3D pattern corresponds to 5.1 GHz

Prepared by COL	Approved by ASU	Date (last revision) 2003-08-29	Doc. No. AE030058	Rev A
Distribution EA	-			

4.3 Return Loss plot

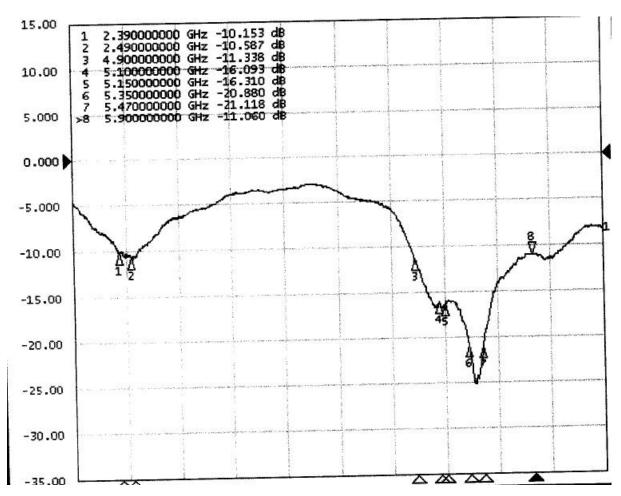


Figure 3 S11 plot

Prepared by	Approved by	Date (last revision)	Doc. No.	Rev
COL	ASU	2003-08-29	AE030058	Α
Distribution				
EA				

4.4 Measured Isolation

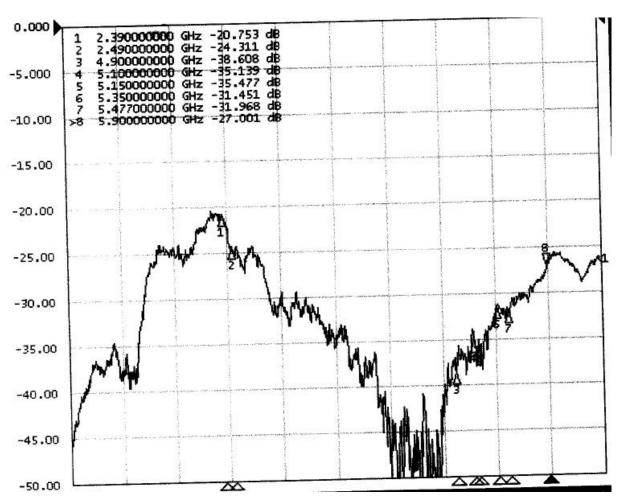
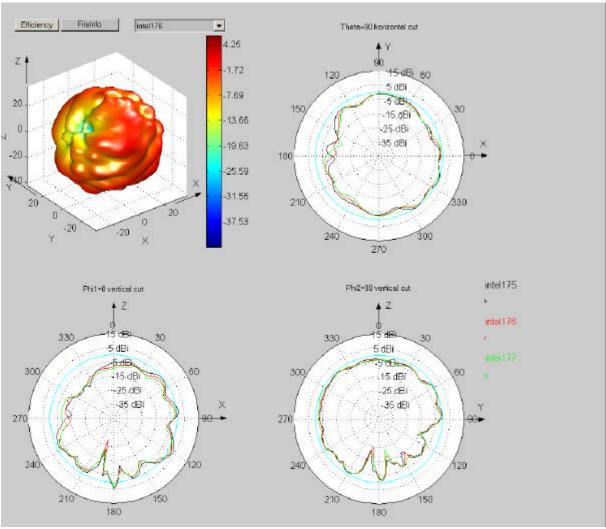



Figure 4 S21 plot – antenna 1 is connected to port 1 of the NA and antenna 2 o port 2.

Prepared by COL	Approved by ASU	Date (last revision) 2003-08-29	Doc. No. AE030058	Rev A
Distribution EA	1,1,00	2000 00 20	7.20000	

5 Enclosures

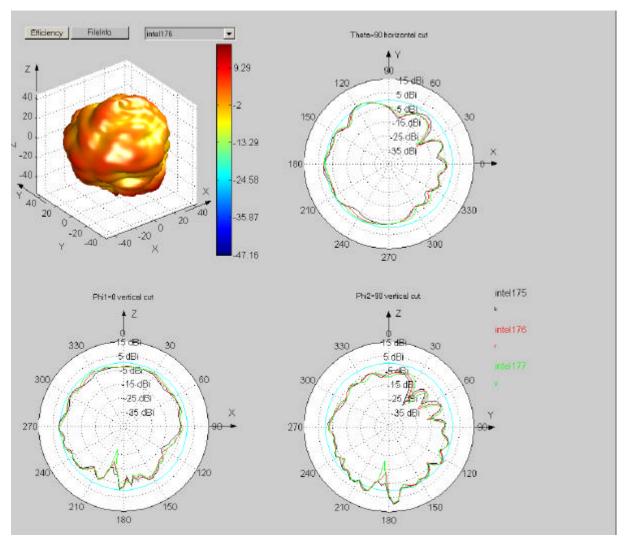

5.1 2.39 – 2.49 GHz Band

Figure 5 Vertical Polarization; polar plots show 2.4, 2.45 and 2.5 GHz. The 3D pattern corresponds to 2.45 GHz

Prepared by COL	Approved by ASU	Date (last revision) 2003-08-29	Doc. No. AE030058	Rev A
Distribution				
FA				

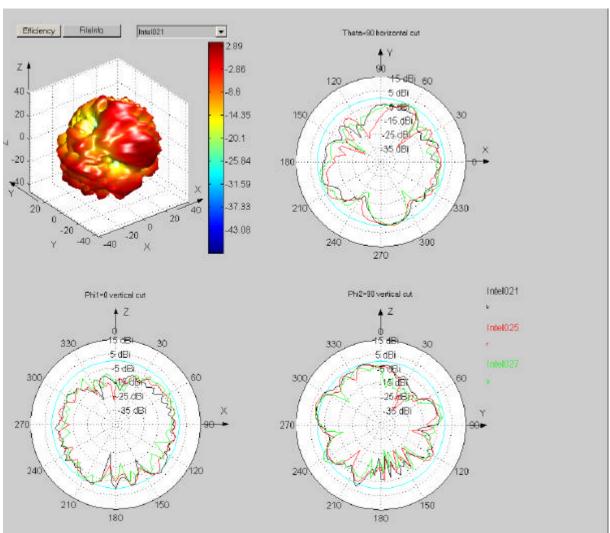


Figure 6 Horizontal Polarization; polar plots show 2.4, 2.45 and 2.5 GHz. The 3D pattern corresponds to 2.45 GHz

Prepared by	Approved by	Date (last revision)	Doc. No.	Rev
COL	ASU	2003-08-29	AE030058	Α
Distribution				
FA				

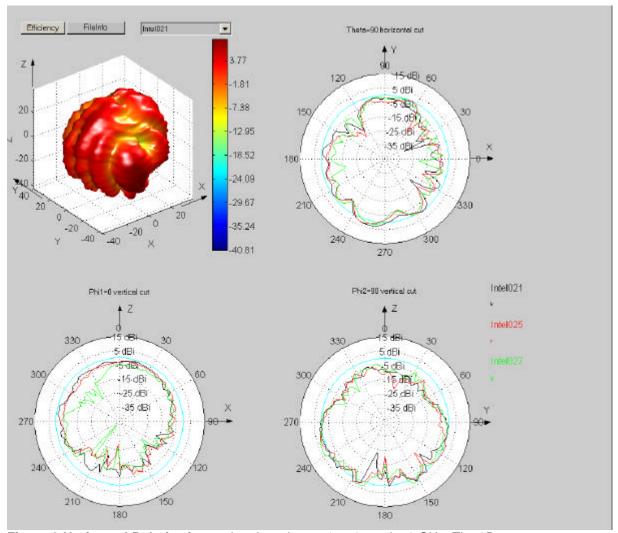

5.2 4.9 GHz – 5.9 GHz Band

Figure 7 Vertical Polarization; polar plots show 5.1, 5.47 and 5.9 GHz. The 3D pattern corresponds to 5.1 GHz

Prepared by COL	Approved by ASU	Date (last revision) 2003-08-29	Doc. No. AE030058	Rev A
Distribution				
FA				

Figure 8 Horizontal Polarization; polar plots show 5.1, 5.47 and 5.9 GHz. The 3D pattern corresponds to 5.1 GHz

Prepared by COL	Approved by ASU	Date (last revision) 2003-08-29	Doc. No. AE030058	Rev A
Distribution EA				

5.3 Single Antenna Element

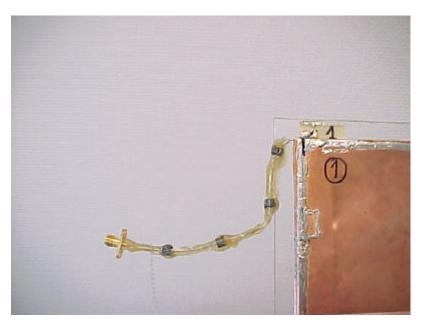


Figure 9 Single test object

Figure 10 Antenna in original and production design